Minimum Forcing Sets for Miura Folding Patterns

نویسندگان

  • Brad Ballinger
  • Mirela Damian
  • David Eppstein
  • Robin Y. Flatland
  • Jessica Ginepro
  • Thomas C. Hull
چکیده

We introduce the study of forcing sets in mathematical origami. The origami material folds flat along straight line segments called creases, each of which is assigned a folding direction of mountain or valley. A subset F of creases is forcing if the global folding mountain/valley assignment can be deduced from its restriction to F . In this paper we focus on one particular class of foldable patterns called Miura-ori, which divide the plane into congruent parallelograms using horizontal lines and zig-zag vertical lines. We develop efficient algorithms for constructing a minimum forcing set of a Miura-ori map, and for deciding whether a given set of creases is forcing or not. We also provide tight bounds on the size of a forcing set, establishing that the standard mountain-valley assignment for the Miura-ori is the one that requires the most creases in its forcing sets. Additionally, given a partial mountain/valley assignment to a subset of creases of a Miura-ori map, we determine whether the assignment domain can be extended to a locally flat-foldable pattern on all the creases. At the heart of our results is a novel correspondence between flat-foldable Miura-ori maps and 3-colorings of grid graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal forcing sets for 1D origami

This paper addresses the problem of finding minimum forcing sets in origami. The origami material folds flat along straight lines called creases that can be labeled as mountains or valleys. A forcing set is a subset of creases that force all the other creases to fold according to their labels. The result is a flat folding of the origami material. In this paper we develop a linear time algorithm...

متن کامل

Minimum Forcing Sets for 1D Origami✩

This paper addresses the problem of finding minimum forcing sets in origami. The origami material folds flat along straight lines called creases that can be labeled as mountains or valleys. A forcing set is a subset of creases that force all the other creases to fold according to their labels. The result is a flat folding of the origami material. In this paper we develop a linear time algorithm...

متن کامل

Complete forcing numbers of polyphenyl systems

The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...

متن کامل

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

On the zero forcing number of some Cayley graphs

‎Let Γa be a graph whose each vertex is colored either white or black‎. ‎If u is a black vertex of Γ such that exactly one neighbor‎ ‎v of u is white‎, ‎then u changes the color of v to black‎. ‎A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that‎ if initially the vertices in Z are colored black and the remaining vertices are colored white‎, ‎then Z changes the col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015